Patterns, Regular Expressions and Finite Automata

(LECTURE 5)

Patterns and their defined languages

- S: a finite alphabet
- A pattern is a string of symbols representing a set of strings in S*.
- The set of all patterns is defined inductively as follows:
 - 1. atomic patterns: $a \in S, e, \emptyset, \#, @.$
 - 2. compound patterns: if a and b are patterns, then so are: a + b, $a \cap b$, a^* , a^+ , a^+ a and $a \cdot b$.
- For each pattern a, L(a) is the language represented by a and is defined inductively as follows:

```
1. L(a) = \{a\}, L(e) = \{e\}, L(\emptyset) = \{\}, L(\#) = S, L(@) = S *.

2. If L(a) and L(b) have been defined, then L(a + b) = L(a) \cup L(b), L(a \cap b) = L(a) \cap L(b).

L(a^+) = L(a)^+, L(a^*) = L(a)^*, L(-a) = S^* - L(a), L(a \cdot b) = L(a) \cdot L(b).
```

More on patterns

- We say that a string x matches a pattern a iff $x \in L(a)$.
- Some examples:

```
1. ^*S = L(@) = L(#^*)
```

2.
$$L(x) = \{x\}$$
 for any $x \in S^*$

3. for any
$$x_1,...,x_n$$
 in S^* , $L(x_1+x_2+...+x_n) = \{x_1,x_2,...,x_n\}$.

4.
$$\{x \mid x \text{ contains at least 3 a's}\} = L(@a@a@a@)$$

5.
$$\S{a} = \# \cap \neg a$$

6.
$$\{x \mid x \text{ does not contain } a\} = (\# \cap \neg a)^*$$

- 7. {x | every 'a' in x is followed sometime later by a 'b' } =
 - = {x | either no 'a' in x or \$ 'b' in x followed no 'a' }

$$= (\# \cap \sim a)^* + @b(\# \cap \sim a)^*$$

More on pattern matching

- Some interesting and important questions:
- 1. How hard is it to determine if a given input string x matches a given pattern a?
 - ==> efficient algorithm exists
- 2. Can every set be represented by a pattern?
 - ==> no! the set $\{a^nb^n \mid n>0\}$ cannot be represented by any pattern.
- 3. How to determine if two given patterns a and b are equivalent? (I.e., L(a) = L(b)) --- an exercise!
- 4. Which operations are redundant?
 - \circ e = \sim (#+ \cap @) = \varnothing *; a+ = $a \cdot a$ *
 - \circ # = $a_1 + a_2 + ... + a_n$ if S = $\{a_1, ..., a_n\}$
 - o $a + b = (-a \cap -b) ; a \cap b = (-a + -b)$
 - It can be shown that ~ is redundant.

Equivalence of patterns, regular expr. & FAs

- Recall that regular expressions are those patterns that can be built from: $a \in S$, e, \emptyset , +, \cdot and *.
- Notational conventions:
 - o a + br means a + (br)
 - o a + b* means a + (b*)
 - o a b* means a (b*)

Theorem 8: Let $A \subseteq S^*$. Then the followings are equivalent:

- 1. A is regular (I.e., A = L(M) for some FA M),
- 2. A = L(a) for some pattern a,
- 3. A = L(b) for some regular expression b.

pf: Trivial part: (3) => (2).

- (2) => (1) to be proved now!
- (1) = > (3) later.

(2) => (1): Every set represented by a pattern is regular

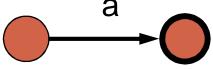
Pf: By induction on the structure of pattern a.

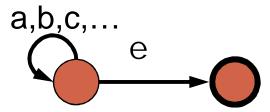
Basis: a is atomic: (by construction!)

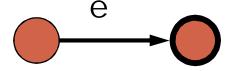
$$a = e$$

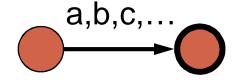
3.
$$a = \emptyset$$
:

$$4. a = #$$
:









Inductive cases: Let M_1 and M_2 be any FAs accepting L(b) and L(g), respectively.

6.
$$\Rightarrow$$
 bg: => L(a) = L(M₁· M₂)

7.
$$\Rightarrow b^* :=> L(a) = L(M_1^*)$$

- 8. \Rightarrow b + g, \Rightarrow ~b or a = b \cap g: By ind. hyp. b and gare regular. Hence by closure properties of regular languages, a is regular, too.
- 9. $\Rightarrow b^+ = bb^* : Similar to case 8.$

Some examples patterns & their equivalent FAs

$$1. (aaa)^* + (aaaaa)^*$$

(1)=>(3): Regular languages can be represented by reg. expr.

 $M = (Q, S, d, S, F) : a NFA; X \subseteq Q: a set of states; m, n \in Q: two states$

- p^X(m, n) =_{def} {y ∈ S* | \$ a path from m to n labeled y and all intermediate states ∈ X }.
 - Note: L(M) = ?
- p^x(m, n) can be shown to be representable by a regular expr, by induction as follows:

Let
$$D(m,n) = \{ a \mid (m-a \rightarrow n) \in d \} = \{a_1,...,a_k\} \ (k \ge 0) \}$$

= the set of symbols by which we can reach from m to n, then

Basic case: $X = \emptyset$:

1.1 if
$$m \ne n$$
: $p^{\emptyset}(m, n) = \{a_1, a_2, ..., a_k\} = L(a_1 + a_2 + ... + a_k)$ if $k > 0$,
= $\{\}$ = $L(\emptyset)$ if $k = 0$.

1.2 if m =n:
$$p^{\emptyset}(m, n) = \{a_1, a_2, ..., a_k, e\} = L(a_1 + a_2 + ... + a_k + e)$$
 if $k > 0$,
= $\{e\}$ = $L(e)$ if $k = 0$.

3. For nonempty X, let q be any state in X, then : $p^{X}(m, n) = p^{X-\{q\}}(m, n) \cup p^{X-\{q\}}(m,q) (p^{X-\{q\}}(q,q))^* p^{X-\{q\}}(q, n)$.

By Ind.hyp.(why?), there are regular expressions a, b, gwith L([a, b, g) = $r[p^{X-\{q\}}(m, n), p^{X-\{q\}}(m,q), (p^{X-\{q\}}(q,q)), p^{X-\{q\}}(q, n)]$

Hence
$$p^{X}(m, r) = L(a) U L(b) L(g) * L(r),$$

= $L(a + bg^{*}r)$
and can be represented as a reg. expr.

• Finally, L(M) = $\{x \mid s --x--> f, s \in S, f \in F \}$ = $S_{s \in S, f \in F}$ $p^Q(s,f)$, is representable by a regular expression.

Some examples

Example (9.3): M:

- $L(M) = p^{\{p,q,r\}}(p,p) = p^{\{p,r\}}(p,p) + p^{\{p,r\}}(p,q) (p^{\{p,r\}}(q,q)) * p^{\{p,r\}}(q,p)$
- $p^{\{p,r\}}(p,p) = ?$
- $p^{\{p,r\}}(p,q) = ?$
- $p^{\{p,r\}}(q,q) = ?$
- $p^{\{p,r\}}(q,p) = ?$

Hence L(M) = ?

	0	1
>pF	{p}	{q}
q	{r}	{}
r	{p}	{q}

Another approach

The previous method

- easy to prove,
- o easy for computer implementation, but
- hard for human computation.

• The strategy of the new method:

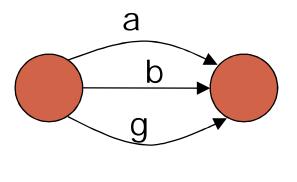
- o reduce the number of states in the target FA and
- o encodes path information by regular expressions on the edges.
- until there is one or two states : one is the start state and one is the final state.

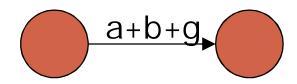
Steps

- O. Assume the machine M has only one start state and one final state. Both may probably be identical.
- 1. While the exists a third state p that is neither start nor final:
 - 1.1 (Merge edges) For each pair of states (q,r) that has more than 1 edges with labels $t_1, t_2, ..., t_n$, respectively, than merge these edges by a new one with regular expression $t = t_1 + t_2 ... + t_n$.
 - 1.2 (Replace state p by edges; remove state)
 - Let $(p_1, a_1, p),...$ (p_n, a_n, p) where $p_j != p$ be the collection of all edges in M with p as the destination state, and
 - $(p, p, q_1),...,(p, b_m, q_m)$ where qj != p be the collection of all edges with p as the start state. Now the sate p together with all its connecting edges can be removed and replaced by a set of m x n new edges:
 - $\{ (p_i, a_i t^* b_i, q_i) \mid i \text{ in } [1,n] \text{ and } j \text{ in } [1,m] \}.$

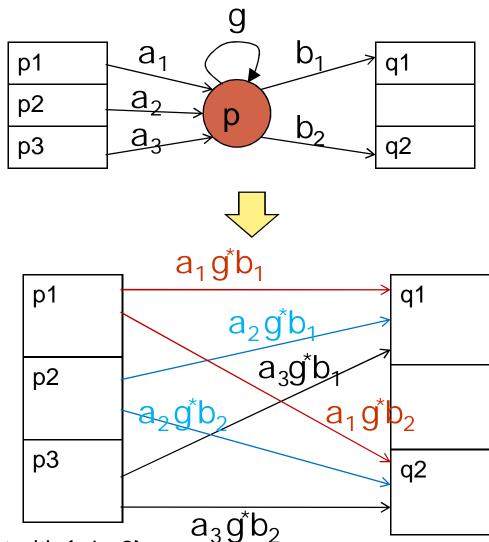
The new machine is equivalent to the old one.

• Merge Edges :





Replace state by Edges



Note: {p1,p2,p3} may intersect with {q1,q2}.

- 2. perform 1.1 once again (merge edges)
- // There are one or two states now
- 3 Two cases to consider:
 - 3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled ton the sate,

then t* is the result, other the result is e.

3.2 The machine has one start state s and one final state f.

Let $(s, s \rightarrow s, s)$, $(f, f \rightarrow f, f)$, $(s, s \rightarrow f, f)$ and $(f, f \rightarrow f, f)$ be the collection of all edges in the machine, where $(s \rightarrow f)$ means the regular expression or label on the edge from s to f.

The result then is

Example

	0	1
> p	{p,r}	{q,r}
q	{r}	{p,q,r}
rF	{p,q}	{q,r}

1. another representation

	р	q	r
р	0	1	0,1
q	1	1	0,1
r	0	0,1	1

Merge edges

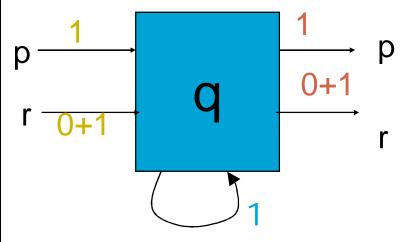
	р	q	r
р	0	1	0,1
q	1	1	0,1
r	0	0,1	1

	р	q	r
р	0	1	0+1
q	1	1	0+1
r	0	0+1	1

remove q

	р	q	r
р	0,	1	0+1,
	11*1		11* (0+1)
q	1	1,	0+1
r	0, (0+1) 1*1	0+1	1, (0+1)1*(0+1)

	p	q	r
q	0	1	0+1
q	1	1	0+1
r	0	0+1	1



Form the final result

	р	r
>p	0+11*1	0+1+11* (0+1)
rF	0+ (0+1) 1*1	1+ (0+1)1*(0+1)

Final result : =
$$[p \rightarrow p + (p \rightarrow r) (r \rightarrow r)^* (r \rightarrow p)]^* (p \rightarrow r) (r \rightarrow r)^*$$

 $[(0+11*1) + (0+1+11*(0+1)) (1+(0+1)1*(0+1))^* (0+(0+1)1*1)]^*$
 $(0+1+1*(0+1)(1+(0+1)(0+1))$