Patterns, Regular Expressions and Finite Automata

(LECTURE 5)

Patterns and their defined languages

- : a finite alphabet
- A pattern is a string of symbols representing a set of strings in *.
- The set of all patterns is defined inductively as follows:

1. atomic patterns:
$\mathrm{a} \in$, , \varnothing, \#, @.
2. compound patterns: if and are patterns, then so are: $+, \cap, *,+, \sim$ and

- For each pattern , L() is the language represented by and is defined inductively as follows:

1. $L(a)=\{a\}, L()=\{ \}, L(\varnothing)=\{ \}, L(\#)=, L(@)=*$.
2. If $L()$ and $L()$ have been defined, then
$\mathrm{L}(+\mathrm{l}=\mathrm{L}(\mathrm{)} \mathrm{UL}(\mathrm{)}, \mathrm{~L}(\cap)=\mathrm{L}(\mathrm{)} \cap \mathrm{~L}(\mathrm{)}$.
$\mathrm{L}\left({ }^{+}\right)=\mathrm{L}()^{+}, \mathrm{L}\left({ }^{*}\right)=\mathrm{L}()^{*}$,
$L(\sim)=*-L(), L(\quad)=L() \cdot L()$.

More on patterns

- We say that a string x matches a pattern iff $x \in L()$.
- Some examples:

1. $*=\mathrm{L}(@)=\mathrm{L}\left(\#^{*}\right)$
2. $L(x)=\{x\}$ for any $x \in *$
3. for any $\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ in $\quad *, \mathrm{~L}\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\right)=\left\{\mathrm{x}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$.
4. $\{x \mid x$ contains at least 3 a's $\}=L(@ a @ a @ a @\}$
5. $-\{\mathrm{a}\}=\# \cap \sim \mathrm{a}$
6. $\{x \mid x$ does not contain $a\}=(\# \cap \sim a)^{*}$
7. $\{\mathrm{x} \mid$ every 'a' in x is followed sometime later by a b ' $\}=$
$=\{\mathrm{x} \mid$ either no ' a ' in x or b ' in x followed no 'a' $\}$
$=(\# \cap \sim \mathrm{a})^{*}+@ b(\# \cap \sim \mathrm{a})^{*}$

More on pattern matching

- Some interesting and important questions:

1. How hard is it to determine if a given input string x matches a given pattern a?
==> efficient algorithm exists
2. Can every set be represented by a pattern? $==>$ no! the set $\left\{a^{n} b^{n} \mid n>0\right\}$ cannot be represented by any pattern.
3. How to determine if two given patterns and are equivalent? (I.e., L() = L()) --- an exercise !
4. Which operations are redundant?

- $=\sim\left(\#^{+} \cap @\right)=\varnothing * ; \quad+=\cdot *$
- $\#=a_{1}+a_{2}+\ldots+a_{n}$ if $=\left\{a_{1}, . ., a_{n}\right\}$
$0 \quad+=\sim(\sim \cap \sim) ; \cap=\sim(\sim+\sim)$
- It can be shown that \sim is redundant.

Equivalence of patterns, regular expr. \&FAs

- Recall that regular expressions are those patterns that can be built from: $\mathrm{a} \in,, \varnothing,+, \cdot$ and ${ }^{*}$.
- Notational conventions:

$\begin{array}{ll} \circ & + \text { means } \\ 0 & +(\\ \circ & + \text { means } \\ +(\end{array}$

Theorem 8: Let $\mathrm{A} \subseteq{ }^{*}$. Then the followings are equivalent:

1. A is regular (I.e., $A=L(M)$ for some FA M),
2. $\mathrm{A}=\mathrm{L}(\mathrm{)}$ for some pattern ,
3. $\mathrm{A}=\mathrm{L}(\mathrm{)}$ for some regular expression .
pf: Trivial part: (3) $=>$ (2).
(2) $=>$ (1) to be proved now!
(1) $=>$ (3) later.

(2) $=>$ (1) : Every set represented by a pattern is regular

Pf: By induction on the structure of pattern
Basis: is atomic: (by construction!)

$$
\text { 1. } \quad=\mathrm{a}:
$$

$$
\text { 2. } \quad=:
$$

$$
\text { 3. } \quad=\varnothing:
$$

Inductive cases: Let M_{1} and M_{2} be any FAs accepting $\mathrm{L}($) and L(), respectively.
6. $=:=>L()=L\left(M_{1} \cdot M_{2}\right)$
7. $=*:=>L()=L\left(M_{1}^{*}\right)$
8. $=+, \quad=\sim$ or $=\cap$: By ind. hyp. and are regular. Hence by closure properties of regular languages, is regular, too.
9. $={ }^{+}=*$: Similar to case 8.

Some examples patterns \& their equivalent FAs

1. (aaa)* + (aaaaa)*

$(1)=>(3)$: Regular languages can be represented by reg. expr.

$\mathrm{M}=(\mathrm{Q}, \quad, \quad \mathrm{S}, \mathrm{F}): \mathrm{a} N \mathrm{NA} ; \mathrm{X} \subseteq \mathrm{Q}:$ a set of states; , $\in \mathrm{Q}$: two states

- $X_{(}()=,=_{\text {def }}\{y \in * \mid$ a path from to labeled y and all intermediate states $\in \mathrm{X}$ \}.
- Note: L(M) =?
- ${ }^{x}($,) can be shown to be representable by a regular expr, by induction as follows:
Let $\mathrm{D}()=,\{\mathrm{a} \mid(-\mathrm{a} \rightarrow) \in \quad\}=\left\{\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}\right\}(\mathrm{k} \geq 0)$
$=$ the set of symbols by which we can reach from to , then
Basic case: $\mathrm{X}=\varnothing$:

$$
\begin{gathered}
\text { 1.1 if } \neq: \varnothing\left(\begin{array}{c}
\varnothing)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=L\left(a_{1}+a_{2}+\ldots+a_{k}\right) \text { if } k>0, \\
=\{ \} \\
=L(\varnothing) \\
1.2 \text { if }=: \varnothing(,)=\left\{a_{1}, a_{2}, \ldots a_{k}, \quad\right\}=L\left(a_{1}+a_{2}+\ldots+a_{k}+\right) \text { if } k>0, \\
=\{ \}
\end{array} \quad \text { if } k=0 .\right.
\end{gathered}
$$

3. For nonempty X , let q be any state in X , then :

By Ind.hyp.(why?), there are regular expressions , with $\mathrm{L}\left([, \quad, \quad)=[]^{\mathrm{X}-\{q\}}(),,{ }^{\mathrm{X}-\{q\}}(, \mathrm{q}),\left(\mathrm{X}^{\mathrm{X}-\{q\}}(\mathrm{q}, \mathrm{q})\right), \quad{ }^{\mathrm{X}-\{q\}}(\mathrm{q}),\right]$

Hence $\mathrm{X}()=,\mathrm{L}(\mathrm{r}) \mathrm{UL}(\mathrm{r} \quad \mathrm{L}() \quad * \mathrm{~L}(\mathrm{)}$, $=\mathrm{L}(+\quad)$ and can be represented as a reg. expr.

- Finally, $L(M)=\{x \mid s--x-->f, s \in S, f \in F\}$
$={ }_{s \in S, f \in F}^{Q}(\mathrm{~s}, \mathrm{f})$, is representable by a regular expression.

Some examples

Example (9.3): M :

- $L(M)=p^{\{p, q, r\}}(p, p)=p^{\{p, r\}}(p, p)+p^{\{p, r\}}(p, q)\left(p^{\{p, r\}}(q, q)\right)^{*} p^{\{p, r\}}(q, p)$
- $\mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{p}, \mathrm{p})=$?
- $\mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{p}, \mathrm{q})=$?
- $\mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{q}, \mathrm{q})=$?
- $\mathrm{p}^{\{\mathrm{p}, \mathrm{r}\}}(\mathrm{q}, \mathrm{p})=$?

Hence $\mathbf{L}(\mathbf{M})=$?

	0	1
$>p F$	$\{p\}$	$\{q\}$
q	$\{r\}$	$\}$
r	$\{p\}$	$\{q\}$

Another approach

- The previous method
- easy to prove,
- easy for computer implementation, but
- hard for human computation.
- The strategy of the new method:
- reduce the number of states in the target FA and
- encodes path information by regular expressions on the edges.
- until there is one or two states : one is the start state and one is the final state.

Steps

0. Assume the machine M has only one start state and one final state. Both may probably be identical.
1. While the exists a third state p that is neither start nor final:
1.1 (Merge edges) For each pair of states (q, r) that has more than 1 edges with labels $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{n}}$, respectively, than merge these edges by a new one with regular expression $t=t_{1}+t_{2} \ldots+t_{n}$.
1.2 (Replace state p by edges; remove state)

Let ($\left.p_{1},{ }_{1}, p\right), \ldots\left(p_{n},{ }_{n}, p\right)$ where $p_{j}!=p$ be the collection of all edges in M with p as the destination state, and
$\left(p,{ }_{1}, q_{1}\right), \ldots,\left(p, \quad m^{\prime}, q_{m}\right)$ where $q j!=p$ be the collection of all edges with p as the start state. Now the sate p together with all its connecting edges can be removed and replaced by a set of $\mathrm{m} x \mathrm{n}$ new edges :
$\left\{\left(\mathrm{p}_{\mathrm{i}}, \mathrm{i}^{\text {t }}{ }_{\mathrm{j}}, \mathrm{q}_{\mathrm{j}}\right) \mid \mathrm{i}\right.$ in $[1, \mathrm{n}]$ and j in $\left.[1, \mathrm{~m}]\right\}$.
The new machine is equivalent to the old one.

- Merge Edges:

\checkmark

- Replace state by Edges

Note: $\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}$ may intersect with $\{\mathrm{q} 1, \mathrm{q} 2\}$.
2. perform 1.1 once again (merge edges)
// There are one or two states now
3 Two cases to consider:
3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled t on the sate,
then t^{*} is the result, other the result is .
3.2 The machine has one start state s and one final state f. Let $(\mathrm{s}, \mathrm{s} \rightarrow \mathrm{s}, \mathrm{s}),(\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f}),(\mathrm{s}, \mathrm{s} \rightarrow \mathrm{f}, \mathrm{f})$ and $(\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f})$ be the collection of all edges in the machine, where ($s \rightarrow f$) means the regular expression or label on the edge from s to f .
The result then is

Example

	0	1
$>p$	$\{p, r\}$	$\{q, r\}$
\mathbf{q}	$\{r\}$	$\{p, q, r\}$
$r F$	$\{p, q\}$	$\{q, r\}$

1. another representation

	p	q	r
p	$\mathbf{0}$	1	0,1
\mathbf{q}	$\mathbf{1}$	1	0,1
\mathbf{r}	$\mathbf{0}$	$\mathbf{0 , 1}$	1

Merge edges

	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	$\mathbf{0}$	$\mathbf{1}$	0,1
\mathbf{q}	$\mathbf{1}$	$\mathbf{1}$	0,1
\mathbf{r}	$\mathbf{0}$	0,1	$\mathbf{1}$

	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0 + 1}$
\mathbf{q}	$\mathbf{1}$	$\mathbf{1}$	$0+1$
\mathbf{r}	$\mathbf{0}$	$\mathbf{0 + 1}$	$\mathbf{1}$

remove q

	\mathbf{p}	\mathbf{q}	\mathbf{r}
\mathbf{p}	$\mathbf{0}$, $11^{*} 1$	$\mathbf{1}$	$\mathbf{0 + 1}$, $11^{*}(0+1)$
\mathbf{q}	1	1,	$0+1$
\mathbf{r}	$\mathbf{0}$, $(0+1)$ $1^{* 1}$	$0+1$	1, $(0+1) 1 *(0+1)$

Form the final result

\mathbf{p}		\mathbf{r}
$>\mathbf{p}$	$\mathbf{0 + 1 1 ^ { * } 1}$	$\mathbf{0 + 1 + 1 1 ^ { * } (0 + 1)}$
$\mathbf{r F}$	$\mathbf{0 + (0 + 1)} 1^{*} 1$	$1+(0+1) 1^{*}(0+1)$

Final result : $=\left[p \rightarrow p+(p \rightarrow r)(r \rightarrow r)^{*}(r \rightarrow p)\right]^{*} \quad(p \rightarrow r)(r \rightarrow r)^{*}$
$\left[\left(0+11^{*} 1\right)+\left(0+1+11^{*}(0+1)\right)\left(1+(0+1) 1^{*}(0+1)\right)^{*}\left(0+(0+1) 1^{* 1}\right)\right]^{*}$ $(0+1+1(0+1)(01+(0+1)(10+1))$

